

1 - FORMULAS

If you are serious about doing A level Chemistry, you **MUST** be able to write a formula without a second thought. It is the <u>single most essential skill for an A level chemist</u>.

You have to know and be able to use the information on this page – you should not be looking it up. There is no data sheet with ion charges at A level.

If you can't write a formula in an instant, DROP CHEMISTRY NOW and choose something else.

Elements

Monatomic	Simple molecular	Ionic	Metallic	Giant covalent
helium neon argon krypton xenon radon	hydrogen nitrogen oxygen fluorine chlorine bromine iodine phosphorus sulfur	There are no ionic elements!!	The formula is just the symbol, e.g. magnesium iron sodium nickel	The formula is just the symbol diamond graphite silicon

Compounds

Monatomic	Simple molecular	Ionic	Metallic	Giant covalent
There are no monatomic compounds!!	Some common molecular compounds: carbon dioxide carbon monoxide nitrogen monoxide nitrogen dioxide sulfur dioxide sulfur trioxide ammonia methane hydrogen sulfide	These have to be worked out using ion charges – you have to know these at AS/A level! LEARN them ASAP. Note these acids: hydrochloric acid sulfuric acid nitric acid phosphoric acid	There are no metallic compounds!!	silicon dioxide

Positive id	ons	Negative id	ons
Group 1 ions:	Group 3 ions:	Group 7 ions:	Other common ions
lithium	aluminium	fluoride	nitrate
sodium		chloride	sulfate
potassium	Other common ions	bromide	carbonate
Group 2 ions:	silver	iodide	hydrogencarbonate
magnesium	zinc	Group 6 ions:	hydroxide
calcium	ammonium	oxide	hydride
barium	hydrogen	sulfide	phosphate

TASK 1 – WRITING FORMULAS OF IONIC COMPOUNDS

1)	silver bromide	 9)	lead (II) oxide	
2)	sodium carbonate	 10)	sodium phosphate	
3)	potassium oxide	 11)	zinc hydrogencarbonate	
4)	iron (III) oxide	 12)	ammonium sulphate	
5)	chromium (III) chloride	 13)	gallium hydroxide	
6)	calcium hydroxide	 14)	strontium selenide	
7)	aluminium nitrate	 15)	radium sulfate	
8)	sodium sulfate	 16)	sodium nitride	

TASK 2 - WRITING FORMULAS 1

1)	lead (IV) oxide	 11)	barium hydroxide	
2)	copper	 12)	tin (IV) chloride	
3)	sodium	 13)	silver nitrate	
4)	ammonium chloride	 14)	iodine	
5)	ammonia	 15)	nickel	
6)	sulfur	 16)	hydrogen sulfide	
7)	sulfuric acid	 17)	titanium (IV) oxide	
8)	neon	 18)	lead	
9)	silica	 19)	strontium sulfate	
10)	silicon	 20)	lithium	

TASK 3 - WRITING FORMULAS 2

1)	silver carbonate	 11)	barium hydroxide	
2)	gold	 12)	ammonia	
3)	platinum (II) fluoride	 13)	hydrochloric acid	
4)	nitric acid	 14)	fluorine	
5)	ammonia	 15)	silicon	
6)	silicon (IV) hydride	 16)	calcium phosphate	
7)	phosphorus	 17)	rubidium	
8)	diamond	 18)	germanium (IV) oxide	
9)	vanadium (V) oxide	 19)	magnesium astatide	
10)	cobalt (II) hydroxide	 20)	nitrogen oxide	

2 - EQUATIONS

From an early age you should have been able to balance chemical equations. However, at A level, you will often need to:

- work out the formulas yourselves
- work out what is made (so you need to know some basic general equations)
- for reactions involving ions in solution, write ionic equations

Some general reactions you should know:

General Reaction	Examples
substance + oxygen \rightarrow oxides	$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$
	$2 \text{ H}_2 \text{S} \ + \ 3 \text{ O}_2 \ \rightarrow \ 2 \text{ H}_2 \text{O} \ + \ 2 \text{ SO}_2$
	$C_3H_8 \ + \ 5 \ O_2 \ \rightarrow \ 3 \ CO_2 \ + \ 4 \ H_2O$
metal + water \rightarrow metal hydroxide + hydrogen	2 Na + 2 H ₂ O \rightarrow 2 NaOH + H ₂
metal + acid \rightarrow salt + hydrogen	Mg + 2 HCl \rightarrow MgCl ₂ + H ₂
oxide + acid \rightarrow salt + water	$MgO + 2 HNO_3 \rightarrow Mg(NO_3)_2 + H_2O$
hydroxide + acid \rightarrow salt + water	2 NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + H_2O$
carbonate + acid \rightarrow salt + water + carbon dioxide	$CuCO_3 \ + \ 2 \ HCl \ \rightarrow \ CuCl_2 \ + \ H_2O \ + \ CO_2$
hydrogencarbonate + acid \rightarrow salt + water + carbon dioxide	$KHCO_3 \ + \ HCI \ \rightarrow \ KCI \ + \ H_2O \ + \ CO_2$
ammonia + acid \rightarrow ammonium salt	$NH_3 + HCI \rightarrow NH_4CI$
metal carbonate \rightarrow metal oxide + carbon dioxide (on heating)	$CaCO_3 \rightarrow CaO + CO_2$

TASK 4 - WRITING BALANCED EQUATIONS

- 1) Balance the following equations.
 - a) Mg + HNO₃ \rightarrow Mg(NO₃)₂ + H₂
 - b) $CuCl_2$ + NaOH \rightarrow $Cu(OH)_2$ + NaCl
 - c) SO₂ + O₂ \rightarrow SO₃
 - d) C_4H_{10} + O_2 \rightarrow CO_2 + H_2O
- 2) Give balanced equations for the following reactions.
 - a) sodium + oxygen \rightarrow sodium oxide
 - b) aluminium + chlorine \rightarrow aluminium chloride
 - c) calcium + hydrochloric acid \rightarrow calcium chloride + hydrogen
 - d) ammonia + sulphuric acid \rightarrow ammonium sulphate

TASK 5 - WRITING BALANCED EQUATIONS 2

Write balance equations for the following reactions:

- 1) burning aluminium
- 2) burning hexane (C_6H_{14})
- 3) burning ethanethiol (CH₃CH₂SH)
- 4) reaction of lithium with water
- 5) reaction of calcium carbonate with nitric acid
- 6) thermal decomposition of lithium carbonate
- 7) reaction of ammonia with nitric acid
- 8) reaction of potassium oxide with water
- 9) reaction of calcium hydroxide with hydrochloric acid
- 10) reaction of zinc with phosphoric acid
- 11) reaction of sodium hydrogencarbonate with sulfuric acid
- 12) reaction of potassium hydroxide with sulfuric acid

Ionic equations

When an ionic substance dissolves in water, the positive and negative ions separate and become hydrated (they interact with water molecules rather than each other). For example, a solution of sodium chloride could also be described as a mixture of hydrated sodium ions and hydrated chloride ions in water.

In reactions involving ionic compounds dissolved in water, some of the ions may not be involved in the reaction. These are called **spectator ions**. For such reactions, we can write an **ionic equation** that only shows the species that are involved in the reaction.

Simple examples are equations for which ionic equations can be written include:

ich ionic equations can be

Reactions of acids:

Common ionic equations are: acid + hydroxide

acid + carbonate acid + hydrogencarbonate acid + ammonia

 $\begin{aligned} &H^{*}(aq) + OH^{-}(aq) \to H_{2}O(I) \\ &2 H^{+}(aq) + CO_{3}^{2^{-}}(aq) \to H_{2}O(I) + CO_{2}(g) \\ &H^{*}(aq) + HCO_{3}^{-}(aq) \to H_{2}O(I) + CO_{2}(g) \\ &H^{*}(aq) + NH_{3}(aq) \to NH_{4}^{+}(aq) \end{aligned}$

We can even use these ionic equations to work out the ratio in which acids react without writing any equation.

For example, in the reaction of $H_2SO_4(aq)$ with NaOH(aq) we know that one lot of H_2SO_4 contains two lots of H^+ ions. As H^+ ions react with OH⁻ ions in the ratio 1:1 [$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$] we know that we need two lots of NaOH to provide two lots of OH⁻ ions to react with the two lots of H^+ ions. Therefore, one lot of H_2SO_4 reacts with two lots of NaOH, i.e. the reacting ratio of H_2SO_4 : NaOH = 1:2

contains H⁺(aq)

Precipitation reactions

Some salts are insoluble in water. If solutions containing those ions are mixed, the insoluble salt forms as a solid as the solutions are mixed. This solid is known as a precipitate, and the reaction as precipitation.

Ba(NO₃)₂ (aq) contains Ba²⁺(aq)

contains CO₃²⁻(aq)

the Na⁺(aq) and SO₄²⁻(aq) ions are not involved

Most salts are soluble in water. Often when solutions of two salts are mixed, no such precipitation reaction will take place and the ions will remain dissolved in water.

Nothing happens - solutions just mix together

TASK 6 - IONIC EQUATIONS

1) Use your knowledge of ionic equations to give the molar ratio in which the following acids react with bases. Complete the table to show your answers.

Acid	Formula of acid	Base	Formula of base	Molar ratio of acid:base
hydrochloric acid		lithium hydroxide		
sulphuric acid		sodium hydrogencarbonate		
nitric acid		ammonia		
sulphuric acid		potassium carbonate		
nitric acid		strontium hydroxide		

2) Write ionic equations for each of the following reactions.

- a) reaction of hydrochloric acid (aq) with potassium hydroxide (aq)
- b) precipitation of silver iodide from reaction between silver nitrate (aq) and potassium iodide (aq)
- c) reaction of potassium carbonate (aq) with nitric acid (aq)
- d) precipitation of calcium hydroxide from reaction between sodium hydroxide (aq) and calcium chloride (aq)
- e) reaction of ammonia (aq) with hydrochloric acid (aq)
- f) reaction of sodium hydrogencarbonate (aq) with sulfuric acid (aq)
- g) precipitation of calcium sulfate from reaction between calcium chloride (aq) and sulfuric acid (aq)
- h) precipitation of lead (II) chloride from reaction between lead nitrate (aq) and sodium chloride (aq)
- i) reaction of barium hydroxide (aq) with nitric acid (aq)

3 – SIGNIFICANT FIGURES & STANDARD FORM

Some general rules in chemistry:

- usually give final answers to 3 significant figures (but it is best to keep the whole number on your a during the calculation)
- give Mr's to 1 decimal place

Note: 0.00346678 = 0.00347 (3 sig fig) = 3.47×10^{-3} (3 sig fig) 346678 = 347000 (3 sig fig) = 3.47×10^{5} (3 sig fig)

TASK 7 – SIGNIFICANT FIGURES & STANDARD FORM

4			U.a., in a more ha	4	u				
1)			llowing numbe	ers to	ine quoted ni				
	a)	345789	4 sig figs			d)	6	3 sig figs	
	b)	297300	3 sig figs			e)	0.001563	3 sig figs	
	c)	0.07896	3 sig figs			f)	0.01	4 sig figs	
2)		Complete th	ne following su	ums ai	nd give the a	nswers t	o 3 significan	t figures.	
	a)	6125 x 384				d)	750 ÷ 25		
	b)	25.00 x 0.0	1			e)	0.000152 x	13	
	c)	13.5 + 0.18				f)	0.0125 x 0.0	025	
2)		Mrita tha fa		oro in l	oon otondard	form			
3)			llowing numbe		ION Stanuaru			Λ	
	a)	1.5 x 10 ⁻³				d)	0.0534 x 10	4	
	b)	0.046 x 10 ⁻²	2			e)	10.3 x 10 ⁵		
	c)	3.575 x 10 ⁵	i			f)	8.35 x 10 ⁻³		
4)		Write the fo	llowing numbe	ers in	standard forn	٦.			
	a)	0.000167				d)	34500		
	b)	0.0524				e)	0.62		
	c)	0.00000001	15			f)	87000000		
5)		Complete th	ne following ca	alculat	ions and give	e the ans	wers to 3 sig	nificant figures.	
	a)	6.125 x 10 ⁻³							
	b)	4.3 x 10 ⁻⁴ ÷	÷ 7.0						
	c)	4.0 x 10 ⁸ +	35000						
	d)	0.00156 +	2.4 x 10 ³						
			- 3.4 x 10 ⁻⁵						
			x 0.100 x 10 ⁻¹	-3					
	''	5.00 A 10	X 0.100 X 10	•			•••••		

4 – THE MOLE & AVOGADRO CONSTANT

- One mole of anything contains 6.02 x 10²³ of those things. One mole of bananas is 6.02 x 10²³ bananas. One mole of water molecules is 6.02 x 10²³ water molecules
- This number is known as the Avogadro constant.
- The Avogadro number was chosen so that the mass of one mole of particles of a substance equals the M_r in grams. For example, the M_r of water is 18.0, and the mass of one mole of water molecules in 18.0 grams.

		Moles = <u>Mass (</u> M		rams)		
		1 ton = 1,00	JO,OC)0 g	7	
		1 kg = 1,00	0 g			
		1 mg = 0.00)1 g		-	Remember Mr Moles!
TA	SK	<u> 8 – MOLES</u>				
1)	Hc	w many moles are there in each	of th	ne following?		
	a)	72 g of Mg	b)	4 kg of CuO	c)	39 g of Al(OH) ₃
	d)	1 tonne of NaCl	e)	20 mg of Cu(NO ₃) ₂		
2)	W	hat is the mass of each of the fol	lowin	ıg?		
	a)	5 moles of Cl ₂	b)	0.2 moles of Al ₂ O ₃	c)	0.01 moles of Ag
	d)	0.002 moles of $(NH_4)_2SO_4$	e)	0.3 moles of Na ₂ CO ₃ .10H ₂ O		
3)	a)	Calculate the number of moles	of C(D_2 molecules in 11 g of carbon c	dioxid	le.
	b)	Calculate the number of moles	of C	atoms in 11 g of carbon dioxide		
	a)	Calculate the number of moles	of O	atoms in 11 g of carbon dioxide		
4)	a)	Calculate the number of moles	of Al	₂ O ₃ in 5.1 g of Al ₂ O ₃ .		
	b)	Calculate the number of moles	of Al	$^{3+}$ ions in 5.1 g of Al ₂ O ₃ .		
	a)	Calculate the number of moles	of O ²	$\frac{1}{2}$ ions in 5.1 g of Al ₂ O ₃ .		
5)		experiment was carried out to fi bles of Vitamin C molecules. Cal			I). Itv	was found that 1 g contains 0.00568
6)	Us	e the following data to calculate	the n	nass of the particles shown.		
		Mass of proton = 1.6726×10^{-24}	g	Mass of electror	ר = 9.	1094 x 10 ⁻²⁸ g
		Mass of neutron = 1.6749×10^{-7}	²⁴ g	Avogadro consta	ant =	6.0221 x 10 ²³
	a)	Calculate the mass of a ¹ H ator	n.			
	b)	Calculate the mass of an $^1\text{H}^{\text{+}}$ io	n.			
	c)	Calculate the mass of a ³ H ator	n.			

5 – REACTING MASS CALCULATIONS

What a chemical equation means

	+		\rightarrow	
N ₂	+	3 H ₂	\rightarrow	2 NH ₃
1 molecule N ₂		3 molecules H ₂		2 molecules NH ₃
12 molecules N_2 1 dozen molecules N_2		36 molecules H_2 3 dozen molecules H_2		24 molecules NH_3 2 dozen molecules NH_3
$6 ext{ x } 10^{23} ext{ molecule } N_2$ 1 mole $ ext{ N}_2$		$\begin{array}{c} 18 \text{ x } 10^{23} \text{ molecules } \text{H}_2 \\ 3 \text{ moles } \text{H}_2 \end{array}$		12 x 10^{23} molecules NH ₃ 2 moles NH ₃
10 moles N_2		30 moles H ₂		20 moles NH_3
$0.5 \text{ moles } N_2$		1.5 moles H ₂		1 mole NH_3

<u> ASK 9 –</u>	WHA	<u>T EQUAT</u>	IONS M	<u>1EAN</u>		
4 Na	+	O ₂	\rightarrow	2 Na ₂ O		
12 mol						
0.1 mol						
2 AI	+	3 Cl ₂	\rightarrow	2 AICI ₃		
5 mol						
0.1 mol						
C₄H₁₀	+	6½ O2	\rightarrow	4 CO ₂	+	5 H2O
0.5 mol						
20 mol						
4 NH3	+	3 O ₂	\rightarrow	2 N ₂	+	6 H₂O
0.5 mol						
10 mol						

Reacting mass calculations

You can use balanced chemical equations to find out what mass of chemicals (or volume of gases) react or are
produced in a chemical reaction. To do this, calculate:

(a) moles of \checkmark (b) moles of ? (c) mass of ?

e.g. What mass of iron is produced when 32 kg of iron (III) oxide is heated with CO?

 $\begin{array}{c} \checkmark & ? \\ \mathsf{Fe_2O_3(s)} \ + \ 3 \ \mathsf{CO}(g) \ \rightarrow \ 2 \ \mathsf{Fe}(s) \ + \ 3 \ \mathsf{CO}_2(g) \end{array}$

moles of $Fe_2O_3 = \frac{mass(g)}{M_r} = \frac{32,000}{159.6} = 200.5 \text{ mol}$

1 mole of Fe_2O_3 forms 2 moles of Fe

- : moles of Fe = $2 \times 200.5 = 401.0$ mol
- :. mass of Fe = moles x M_r = 401.0 x 55.8 = 22,400 g (3 sig fig)
- e.g. What mass of oxygen is needed to convert 102 g of ammonia into nitrogen?

 $\begin{array}{ccc} & \checkmark & ? \\ 4 \ \mathsf{NH}_3(g) \ + \ 3 \ \mathsf{O}_2(g) \ \to \ 2 \ \mathsf{N}_2(g) \ + \ 6 \ \mathsf{H}_2\mathsf{O}(g) \end{array}$

moles of NH₃ = $\frac{\text{mass (g)}}{M_r}$ = $\frac{102}{17.0}$ = 6.00 mol

4 moles of NH₃ reacts with 3 moles of O₂ ... 1 mole of NH₃ reacts with ³/₄ mole of O₂

- :. moles of $O_2 = 6.00 \text{ x} \frac{3}{4} = 4.50 \text{ mol}$
- :. mass of O_2 = moles x M_r = 4.50 x 32.0 = 144 g (3 sig fig)
- e.g. When 5.00 g of crystals of hydrated tin (II) chloride, SnCl₂.xH₂O, are heated, 4.20 g of anhydrous tin (II) chloride are formed. Calculate the number of molecules of water of crystallisation are in SnCl₂.xH₂O (i.e. the value of x).

 $SnCl_2.xH_2O \rightarrow SnCl_2 + x H_2O$

moles of SnCl₂ = $\frac{\text{mass (g)}}{M_r}$ = $\frac{4.20}{189.7}$ = 0.02214 moles

- \therefore moles of SnCl₂.xH₂O = 0.02214 mol
- $\therefore M_r \text{ of } SnCl_2.xH_2O = \underline{mass} = \underline{5.00} = 225.8$ moles 0.02214
- \therefore M_r of xH₂O = 225.8 189.7 = 36.1
- :. $x = \frac{36.1}{18.0} = 2$ (x is a whole number)

TASK 10 - REACTING MASS CALCULATIONS 1

- 1) What mass of hydrogen is needed to react with 40 g of copper oxide? $CuO + H_2 \rightarrow Cu + H_2O$
- 2) What mass of oxygen reacts with 192 g of magnesium?

 $2~Mg~+~O_2~\rightarrow~2~MgO$

- 3) What mass of sulfur trioxide is formed from 96 g of sulfur dioxide? 2 SO₂ + O₂ \rightarrow 2 SO₃
- 4) What mass of carbon monoxide is needed to react with 480 kg of iron oxide?

 Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2

5) What mass of carbon dioxide is produced when 5.6 g of butene is burnt.

 $C_4H_8 \ + \ 6 \ O_2 \ \rightarrow \ 4 \ CO_2 \ + \ 4 \ H_2O$

6) What mass of oxygen is needed to react with 8.5 g of hydrogen sulphide (H_2S) ?

 $2 \hspace{0.1cm} H_2S \hspace{0.1cm} + \hspace{0.1cm} 3 \hspace{0.1cm} O_2 \hspace{0.1cm} \rightarrow \hspace{0.1cm} 2 \hspace{0.1cm} SO_2 \hspace{0.1cm} + \hspace{0.1cm} 2 \hspace{0.1cm} H_2O$

7) 4.92 g of hydrated magnesium sulphate crystals (MgSO₄.nH₂O) gave 2.40 g of anhydrous magnesium sulphate on heating to constant mass. Work out the formula mass of the hydrated magnesium sulphate and so the value of n.

 $MgSO_4.nH_2O \rightarrow MgSO_4 + nH_2O$

8) In an experiment to find the value of x in the compound MgBr₂. xH_2O , 7.30 g of the compound on heating to constant mass gave 4.60 g of the anhydrous salt MgBr₂. Find the value of x.

 $MgBr_2.xH_2O \rightarrow MgBr_2 + x H_2O$

9) What mass of glucose must be fermented to give 5.00 kg of ethanol?

 $C_{6}H_{12}O_{6} \ \rightarrow \ 2 \ C_{2}H_{5}OH \ + \ 2 \ CO_{2}$

10) The pollutant sulfur dioxide can removed from the air by reaction with calcium carbonate in the presence of oxygen. What mass of calcium carbonate is needed to remove 1 ton of sulfur dioxide?

 $2 \text{ CaCO}_3 \ + \ 2 \text{ SO}_2 \ + \ \text{O}_2 \ \rightarrow \ 2 \text{ CaSO}_4 \ + \ 2 \text{ CO}_2$

11) What mass of potassium oxide is formed when 7.8 mg of potassium is burned in oxygen?

 $4~K~+~O_2~\rightarrow~2~K_2O$

- 12) What mass of hydrogen is produced when 10.0 g of aluminium reacts with excess hydrochloric acid? 2 AI + 6 HCI \rightarrow 2 AlCI₃ + 3 H₂
- 13) What mass of sodium just reacts with 40.0 g of oxygen? 4 Na + O₂ \rightarrow 2 Na₂O
- 14) What mass of nitrogen is produced when 2.00 tonnes of ammonia gas decomposes? $2~\text{NH}_3$ $\rightarrow~N_2$ + 3 H_2
- 15) What mass of oxygen is produced when 136 g of hydrogen peroxide molecules decompose? $2 H_2O_2 \rightarrow 2 H_2O + O_2$
- 16) What mass of lead (II) oxide is produced when 0.400 moles of lead (II) nitrate decomposes? 2 Pb(NO₃)₂ \rightarrow 2 PbO + 4 NO₂ + O₂

Limiting reagents

- In the real world of chemistry, it is rare that we react the exact right amount of chemicals together. Usually, we have more than we need of one of the reactants and so it doesn't all react it is in excess.
- Sometimes in calculations, we need to work out if one of the reactants is in excess. The reactant that is not in excess is sometimes called the limiting reagent.

Moles at the start		Moles reacting		Reagent in	Moles at the end		
Moles SO ₂	Moles O ₂	Moles SO ₂	Moles O ₂	excess	Moles SO ₂	Moles O ₂	Moles SO ₃
4	3	4	2	O ₂	0	1	4
10	10						
0.1	0.02						
2	0.4						
2	10						

e.g. 1 - Starting point - Working out how much reacts in terms of moles: $2 \text{ SO}_2 + \text{ O}_2 \rightarrow 2 \text{ SO}_3$

And then you usually have to work out the mass of one of the substances.

e.g. 2 $Ba(OH)_2$ + 2 HCl $\rightarrow BaCl_2$ + 2 H₂O

Moles at the start		Moles reacting		Reagent in	Moles at the end		
Mol Ba(OH) ₂	Moles HCI	Mol Ba(OH) ₂	Moles HCI	excess	Mol Ba(OH) ₂	Moles HCI	Moles BaCl ₂
5	5	2.5	5	Ba(OH) ₂			
0.1	0.05						
0.2	0.5						
0.025	0.0375						

e.g. 3 In the manufacture of titanium, what mass of titanium can theoretically be formed when 1 kg of titanium chloride reacts with 0.1 kg of magnesium?

$$\text{TiCl}_4 \ + \ 2 \ \text{Mg} \ \rightarrow \ \text{Ti} \ + \ 2 \ \text{MgCl}_2$$

Moles TiCl₄ = $\frac{1000}{189.9}$ = 5.266 Moles Mg = $\frac{100}{24.3}$ = 4.115

5.266 moles of TiCl_4 needs 10.53 moles of Mg to react,

:. TiCl4 is in XS and does not all react, so Mg is the limiting reagent

 \therefore 2.058 moles of TiCl_4 reacts with 4.115 moles of Mg

∴ 2.058 moles of Ti is produced

Mass of Ti = 2.058 x 47.9 = 98.6 g

TASK 11 – REACTING MASS CALCULATIONS 2

1) In each case work out the limiting reagent and moles of ammonia formed (assuming complete reaction).

 $N_2 \ + \ 3 \ H_2 \ \rightarrow \ 2 \ NH_3$

- a) 3 moles of N_2 + 3 moles of H_2
- b) 3 moles of N_2 + 10 moles of H_2
- c) 0.1 moles of N_2 + 0.2 moles of H_2
- d) 0.5 moles of N_2 + 2.0 moles of H_2
- e) 2 moles of N₂ + 10 moles of H₂

2) In each case work out the limiting reagent and moles of sulphur dioxide formed (assuming complete reaction).

 $2 \text{ SO}_2 + \text{ O}_2 \rightarrow 2 \text{ SO}_3$

- a) 3 moles of SO₂ + 3 moles of O₂
- b) 3 moles of SO₂ + 2 moles of O₂
- c) 0.1 moles of SO_2 + 0.02 moles of O_2
- d) 2.0 moles of SO₂ + 0.4 moles of O₂
- e) 2 moles of SO_2 + 10 moles of O_2
- 3) 5.00 g of iron and 5.00 g of sulphur are heated together to form iron (II) sulphide. Which reactant is in excess and what is the maximum mass of iron (II) sulphide that can be formed?

Fe + S \rightarrow FeS

4) In the manufacture of the fertiliser ammonium sulphate, what is the maximum mass of ammonium sulphate that can be obtained from 2.00 kg of sulphuric acid and 1.00 kg of ammonia?

 $H_2SO_4 \ + \ 2 \ NH_3 \ \rightarrow \ (NH_4)_2SO_4$

5) In the Solvay process, ammonia is recovered by the reaction shown. What is the maximum mass of ammonia that can be recovered from 2 tonnes of ammonium chloride and 0.5 tonnes of calcium oxide?

 $2 \text{ NH}_4\text{Cl} + \text{ CaO} \rightarrow \text{ CaCl}_2 + \text{ H}_2\text{O} + 2 \text{ NH}_3$

6) In the manufacture of titanium, what mass of titanium can theoretically be formed when 0.5 kg of titanium chloride reacts with 0.1 kg of magnesium?

 $\text{TiCl}_4 \ + \ 2 \ \text{Mg} \ \rightarrow \ \text{Ti} \ + \ 2 \ \text{MgCl}_2$

7) In the manufacture of ammonia, what mass of ammonia can theoretically be formed when 1 kg of nitrogen reacts with 0.5 kg of hydrogen?

 $N_2 \ + \ 3 \ H_2 \ \rightarrow \ 2 \ NH_3$

8) In the manufacture of sulphur troxide, what mass of sulphur trioxide can theoretically be formed when 1 kg of sulphur dioxide reacts with 0.5 kg of oxygen?

 $2 \text{ SO}_2 + \text{ O}_2 \rightarrow 2 \text{ SO}_3$

9) Hydrazine (N₂H₄) was used as the rocket fuel for the Apollo missions to the moon. It is by reaction of ammonia with sodium chlorate. What mass of hydrazine is made by reaction of 100 g of ammonia with 100 g of sodium chlorate?

 $2 \text{ NH}_3 \text{ + } \text{NaOCI} \rightarrow \text{ N}_2\text{H}_4 \text{ + } \text{NaCI} \text{ + } \text{H}_2\text{O}$

- A mixture of anhydrous sodium carbonate and sodium hydrogencarbonate of mass 10.000 g was heated until it reached a constant mass of 8.708 g. Calculate the composition of the mixture in grams of each component. Sodium hydrogencarbonate thermally decomposes to form sodium carbonate.
- 2) A mixture of calcium carbonate and magnesium carbonate with a mass of 10.000 g was heated to constant mass, with the final mass being 5.096 g. Calculate the percentage composition of the mixture, by mass.
- 3) 1 mole of a hydrocarbon of formula C_nH_{2n} was burned completely in oxygen producing carbon dioxide and water vapour only. It required 192 g of oxygen. Work out the formula of the hydrocarbon.
- 4) A mixture of MgSO₄.7H₂O and CuSO₄.5H₂O is heated at 120°C until a mixture of the anhydrous compounds is produced. If 5.00 g of the mixture gave 3.00 g of the anhydrous compounds, calculate the percentage by mass of MgSO₄.7H₂O in the mixture.

<u>Yields</u>

- When you make a new substance by a chemical reaction, you may not get all the expected amount of product. For example, if you reacted 4 g of hydrogen with 32 g of oxygen, you may get less than 36 g of water. Reasons include:
 - the reaction may be reversible (both the forwards and backwards reaction can take place)
 - some of the product may be lost when it is separated from the reaction mixture
 - some of the reactants may react in other reactions.

% yield = <u>mass of product obtained</u> x 100 maximum theoretical mass of product

- e.g. Iron is extracted from iron oxide in the Blast Furnace as shown. Fe₂O₃ + 3 CO \rightarrow 2 Fe + 3 CO₂
- a) Calculate the maximum theoretical mass of iron that can be made from 1 tonne of iron oxide.

Moles of $Fe_2O_3 = \frac{mass(g)}{M_r} = \frac{1,000,000}{159.6} = 6266 \text{ moles}$

- :. moles of Fe = $2 \times 6266 = 12530$ mol
- \therefore mass of Fe = moles x M_r = 12530 x 55.8 = 699000 g (3 sig fig)
- b) In the reaction, only 650000 g of iron was made. Calculate the percentage yield.

% Yield = <u>mass actually made</u> x 100 = <u>650000</u> x 100 = 93.0% theoretical mass expected 699000

TASK 12 - PERCENTAGE YIELD

 $2 \text{ SO}_2 + \text{ O}_2 \rightarrow 2 \text{ SO}_3$ 1) Sulfur dioxide reacts with oxygen to make sulfur trioxide. a) Calculate the maximum theoretical mass of sulfur trioxide that can be made by reacting 96 g of sulfur dioxide with an excess of oxygen. b) In the reaction, only 90 g of sulfur trioxide was made. Calculate the percentage yield. c) Give three reasons why the amount of sulfur trioxide made is less than the maximum theoretical maximum. 2) Iron is extracted from iron oxide in the Blast Furnace as shown. $Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$ a) Calculate the maximum theoretical mass of iron that can be made from 1 tonne of iron oxide. b) In the reaction, only 650000 g of iron was made. Calculate the percentage yield. 3) Nitrogen reacts with hydrogen to make ammonia. N_2 + 3 $H_2 \rightarrow 2 NH_3$ a) Calculate the maximum theoretical mass of ammonia that can be made by reacting 90 g of hydrogen with an excess of nitrogen. b) In the reaction, only 153 g of ammonia was produced. Calculate the percentage yield. $TiCl_4 + 2 Mg \rightarrow Ti + 2 MgCl_2$ 4) Titanium can be extracted from titanium chloride by the following reaction. a) Calculate the maximum theoretical mass of titanium that can be extracted from 100 g of titanium chloride . b) In the reaction, only 20 g of titanium was made. Calculate the percentage yield. c) Give three reasons why the amount of titanium made is less than the maximum theoretical maximum. 5) Aluminium is extracted from aluminium oxide in the following reaction. $2 \text{Al}_2\text{O}_3 \rightarrow 4 \text{Al} + 3 \text{O}_2$ a) Calculate the maximum theoretical mass of aluminium that can be made from 1 kg of aluminium oxide. b) In the reaction, only 500 g of aluminium was made. Calculate the percentage yield. 6) The fertiliser ammonium sulpfate is made as follows. $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \rightarrow (\text{NH}_4)_2 \text{SO}_4$ a) Calculate the maximum theoretical mass of ammonium sulfate that can be made by reacting 85 g of ammonia with an excess of sulfuric acid. b) In the reaction, only 300 g of ammonium sulfate was produced. Calculate the percentage yield. 0.8500 g of hexanone, C₆H₁₂O, is converted into its 2,4-dinitrophenylhyrazone during its analysis. After isolation and 7) purification, 2.1180 g of product C₁₂H₁₈N₄O₄ are obtained. Calculate the percentage yield.

Atom Economy

• Atom economy is a measure of what proportion of the products of a reaction are the desired product and how much is waste. The higher the atom economy, the less waste that is produced.

Atom economy = <u>mass of wanted product from equation</u> x 100 total mass of products from equation

e.g.	making ethanol by	glucose	ethanol	carbon dioxide	Atom economy = <u>92</u> x 100 = 51%
	fermentation	$C_6H_{12}O_6(aq) \rightarrow$	2 CH ₃ CH ₂ OH(aq)	+ 2 CO ₂	180
		180 g	92 g 180 g	88 g products	Only 92 g of the 180 g of products is ethanol. This means that 51% of the mass of the products is ethanol, while the other 49% is waste.

TASK 13 – ATOM ECONOMY

1)	Calculate the atom economy to make sodium from sodium chloride.	$2 \text{ NaCl} \rightarrow 2 \text{ Na} + \text{ Cl}_2$
2)	Calculate the atom economy to make hydrogen from the reaction of zinc with hydrochloric acid.	$Zn + 2 HCI \rightarrow ZnCl_2 + H_2$
3)	Calculate the atom economy to make iron from iron oxide in the Blast Furnace.	$Fe_2O_3 + 3 \text{ CO} \rightarrow 2 \text{ Fe} + 3 \text{ CO}_2$
4)	Calculate the atom economy to make calcium oxide from calcium carbonate.	$CaCO_3 \rightarrow CaO + CO_2$
5)	Calculate the atom economy to make sulfur trioxide from sulfur dioxide.	$2 \text{ SO}_2 + \text{ O}_2 \rightarrow 2 \text{ SO}_3$
6)	Calculate the atom economy to make oxygen from hydrogen peroxide.	$2 H_2 O_2 \rightarrow 2 H_2 O + O_2$
7)	Hydrazine (N_2H_4) was used as the rocket fuel for the Apollo missions to the with sodium chlorate (NaOCI).	moon. It is by reaction of ammonia (NH_3)
	ammonia + sodium chlorate \rightarrow hydrazine + sodium ch	loride + water
	$2 \text{ NH}_3 \text{ + } \text{NaOCI} \rightarrow \text{N}_2\text{H}_4 \text{ + } \text{NaCI}$	+ H ₂ O
	 Calculate the maximum theoretical mass of hydrazine that can be mad excess of sodium chlorate. 	e by reacting 340 g of ammonia with an
	b) In the reaction, only 280 g of hydrazine was produced. Calculate the per-	centage yield.
	c) Calculate the atom economy for this way of making hydrazine.	
	d) Explain clearly the difference between atom economy and percentage yield	eld.

6 – GAS CALCULATIONS

THE IDEAL GAS EQUATION

P = pressure (Pa)	
$V = volume (m^3)$	

n = number of moles R = gas constant (8.31 J mol⁻¹ K⁻¹) T = temperature (K)

Volume		Pi	Temperature	
$\frac{\mathrm{dm}^3}{1000} = \mathrm{m}^3$	$\frac{cm^3}{1000000} = m^3$	kPa x 1000 = Pa	MPa x 1000000 = Pa	°C + 273 = K

e.g. Calculate the pressure exerted by 0.100 moles of an ideal gas at 50°C with a volume of 1500 cm³.

 $P = \frac{nRT}{V} = \frac{0.100 \text{ x } 8.31 \text{ x } 323}{\frac{1500}{100000}} = 179000 \text{ Pa} (3 \text{ sf})$

TASK 14 - THE IDEAL GAS EQUATION

- 1) Convert the following into SI units.
 a) 200°C
 b) 98 kPa
 c) 50 cm³
 d) -50°C
 e) 0.1 MPa
 f) 3.2 dm³
- 2) Calculate the volume that 0.400 moles of an ideal gas occupies at 100°C and a pressure of 1000 kPa.
- 3) How many moles of gas occupy 19400 cm³ at 27°C and 1 atm pressure?
- 4) Calculate the pressure that 0.05 moles of gas, which occupies a volume of 200 cm³, exerts at a temperature of 50 K.
- 5) 0.140 moles of a gas has a volume of 2.00 dm^3 at a pressure of 90 kPa. Calculate the temperature of the gas.
- 6) At 273 K and 101000 Pa, 6.319 g of a gas occupies 2.00 dm^3 . Calculate the relative molecular mass of the gas.
- 7) Find the volume of ethyne (C₂H₂) that can be prepared from 10.0 g of calcium carbide at 20°C and 100 kPa. CaC₂(s) + 2 H₂O(I) \rightarrow Ca(OH)₂(aq) + C₂H₂(g)
- 8) What mass of potassium chlorate (V) must be heated to give 1.00 dm³ of oxygen at 20°C and 0.1 MPa. 2 KClO₃(s) \rightarrow 2 KCl(s) + 3 O₂(g)
- 9) What volume of hydrogen gas, measured at 298 K and 100 kPa, is produced when 1.00 g of sodium is reacted with excess water?

2 Na + 2 H₂O \rightarrow 2 NaOH + H₂

10) What volume of carbon dioxide gas, measured at 800 K and 100 kPa, is formed when 1 kg of propane is burned in a good supply of oxygen?

 $C_{3}H_{8} \ + \ 5 \ O_{2} \ \rightarrow \ 3 \ CO_{2} \ + \ 4 \ H_{2}O$

- 11) Calculate the relative molecular mass of a gas which has a density of 2.615 g dm⁻³ at 298 K and 101 kPa.
- 12) A certain mass of an ideal gas is in a sealed vessel of volume 3.25 dm³. At a temperature of 25°C it exerts a pressure of 101 kPa. What pressure will it exert at 100°C?
- 13) An ideal gas occupies a volume of 2.75 dm³ at 290K and 8.7 x 10^4 Pa. At what temperature will it occupy 3.95 dm³ at 1.01 x 10^5 Pa?

REACTING GAS VOLUMES

- The volume of a gas depends on the temperature, pressure and number of moles. What the gas is does not affect its volume.
- This means that under the same conditions of temperature and pressure, 100 cm³ (as an example) of one gas contains the same number of moles as 100 cm³ of any other gas.
 - *e.g.* What volume of oxygen reacts with 100 cm³ of but-1-ene?

 $C_4H_8(g) + 6 O_2(g) \rightarrow 4 CO_2(g) + 4 H_2O(I)$ Answer = 600 cm³

e.g. 1 dm³ of but-1-ene is reacted with 10 dm³ of oxygen. What volume of oxygen remains at the end? $C_4H_8(g) + 6 O_2(g) \rightarrow 4 CO_2(g) + 4 H_2O(I)$

6 dm³ of O₂ reacts with 1 dm³ of but-1-ene \therefore 4 dm³ of oxygen is left over

TASK 15 - REACTING GAS VOLUMES

1) What volume of oxygen is required to burn the following gases, and what volume of carbon dioxide is produced?

a) 1 dm ³ of methane	$CH_4(g) \ + \ 2 \ O_2(g) \ \rightarrow \ CO_2(g) \ + \ 2 \ H_2O(I)$
b) 20 cm ³ of butene	$C_4 H_8(g) \ + \ 6 \ O_2(g) \ \rightarrow \ 4 \ CO_2(g) \ + \ 4 \ H_2O(I)$
c) 500 cm ³ of ethyne	$2 \ C_2 H_2(g) \ + \ 5 \ O_2(g) \ \rightarrow \ 4 \ CO_2(g) \ + \ 2 \ H_2O(I)$
d) 750 cm ³ of benzene	$2 \ C_6 H_6(g) \ + \ 15 \ O_2(g) \ \rightarrow \ 12 \ CO_2(g) \ + \ 6 \ H_2O(I)$
d) 750 cm ³ of benzene	$2 \ C_6 H_6(g) \ + \ 15 \ O_2(g) \ \rightarrow \ 12 \ CO_2(g) \ + \ 6 \ H_2 O(I)$

2) When 100 cm³ of hydrogen bromide reacts with 80 cm³ of ammonia, a white solid is formed and some gas is left over. What gas and how much of it is left over?

 $NH_3(g) \ + \ HBr(g) \ \rightarrow \ NH_4Br(s)$

3) 100 cm³ of methane was reacted with 500 cm³ of oxygen. What is the total volume of all gases at the end, and indicate how much there is of each gas?

 $CH_4(g) \ + \ 2 \ O_2(g) \ \rightarrow \ CO_2(g) \ + \ 2 \ H_2O(I)$

4) If 4 dm³ of hydrogen sulphide is burned in 10 dm³ of oxygen, what is the final volume of the mixture (give the volume of each gas at the end)?

 $2 \ H_2 S(g) \ + \ 3 \ O_2(g) \ \rightarrow \ 2 \ H_2 O(g) \ + \ 2 \ SO_2(g)$

Should I get a Health Checkup?

Give the formula of each of the following substances.

1)

2)

a)	zinc nitrate	 e)	phosphorus	
b)	lead	 f)	nitrogen	
c)	chromium (III) oxide	 g)	barium hydroxide	
d)	ammonium sulphate	 h)	aluminium sulphate	

Use your knowledge of ionic equations to give the molar ratio in which the following acids react with bases. Complete the table to show your answers.

(4)

(8)

Acid	Formula of acid	Base	Formula of base	Molar ratio of acid:base
sulphuric acid		potassium hydroxide		
hydrochloric acid		potassium hydrogencarbonate		
nitric acid		ammonia		
hydrochloric acid		zinc carbonate		

3) Write ionic equations for each of the following reactions.

a) reaction of sulphuric acid (aq) and sodium hydroxide (aq)
(2)
b) precipitation of barium carbonate by mixing solutions of barium hydroxide and sodium carbonate
(2)
c) reaction of nitric acid (aq) and ammonia (aq)
(2)
d) reaction of sulphuric acid (aq) and potassium hydrogencarbonate (aq)
(2)

4)	a)	Define the term relative atomic mass.	(0)
	b)	Explain why ¹² C is referred to in the definition.	(2)
			(1)
	c)	Explain why carbon has a relative atomic mass of 12.011 and not exactly 12.000.	
			(1)
5)		In each case work out the limiting reagent and moles of ammonia formed (assuming complete reaction).	
		$N_2 \ \textbf{+} \ \textbf{3} \ \textbf{H}_2 \ \rightarrow \ \textbf{2} \ \textbf{N}\textbf{H}_3$	
	a)	5 moles of N_2 + 5 moles of H_2 moles of NH_3 formed =	(1)
	b)	2 moles of N_2 + 5 moles of H_2 moles of NH_3 formed =	(1)
	C)	10 moles of N_2 + 50 moles of H_2 moles of NH_3 formed =	(1)
	d)	0.2 moles of N_2 + 0.05 moles of H_2 moles of NH_3 formed =	(1)
6)		Calculate the volume of 0.200 moles of carbon dioxide at 100°C and 2 MPa pressure.	
			(3)
7)		Calculate the number of moles of argon in 200 cm ³ at 100 kPa at 20°C.	
			(3)
8)		The equation is for the combustion of ethane in oxygen. $C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$	
		What volume of carbon dioxide is formed and what is the total volume of gases at the end in each of the following reactions.	
	a)	100 cm ³ of ethane + 100 cm ³ of oxygen	
		volume of CO ₂ formed = Total volume of gases at end =	(2)
	b)	100 cm ³ of ethane + 500 cm ³ of oxygen	
		volume of CO ₂ formed = Total volume of gases at end =	(2)
	c)	200 cm ³ of ethane + 400 cm ³ of oxygen	
		volume of CO ₂ formed = Total volume of gases at end =	(2)
i i			

Г

9)		What volume of hydrogen is formed at 20°C and 100000 Pa pressure when 2 g of magnesium is reacted with excess sulphuric acid?	
		$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$	
			(4)
10)		What volume of carbon monoxide is formed at 1200°C and 0.14 MPa pressure when 1 kg of iron oxide is reduced by carbon?	
		$Fe_2O_3(s) + 3 C(s) \rightarrow 2 Fe(l) + 3 CO(g)$	
			(4)
11)	a)	In 20 moles of Al ₂ O ₃ ,	
		i) how many moles of Al ³⁺ ions?	
		ii) how many moles of O ²⁻ ions?	(2)
	b)	In 360 g of water	
		i) how many moles of H atoms?	
		ii) how many moles of O atoms?	(2)
	C)	In 1 kg of aluminium sulphate	
		i) how many moles of aluminium ions?	
		ii) how many moles of sulphate ions?	(2)
12)		What mass of Fe_3O_4 is produced when 140 g of iron reacts with excess steam?	
		$3 \text{ Fe}(s) + 4 \text{ H}_2\text{O}(g) \rightarrow \text{ Fe}_3\text{O}_4(s) + 4 \text{ H}_2(g)$	
			(3)
13)		What mass of potassium oxide is formed when 7.8 g of potassium is burned in oxygen?	
		$4 \text{ K} + \text{O}_2 \rightarrow 2 \text{ K}_2\text{O}$	
			(2)
			(3)

14)	a)		ur trioxide is made from sulfur dioxide by the following reaction. Calculate the maximum amount of sulfur ide that can be made from 1 kg of sulfur dioxide.	
			$2 SO_2 + O_2 - 2 SO_3$	
				(3)
	b)	In a	n experiment, only 1200 g of sulfur trioxide was produced.	
		i)	Calculate the percentage yield.	
				(1)
		ii)	Give three reasons why the yield is less than 100%.	
				(1)
	c)	Calo	culate the atom economy for this process	(1)
15)	a)		ninium is made from aluminium oxide by electrolysis. Calculate the mass of aluminium that can be made	
		IIOII	1 kg of aluminium oxide. 2 Al ₂ O ₃ \rightarrow 4 Al + 3 O ₂	
				(3)
	b)	Calo	culate the percentage yield if 500 g of aluminium is produced.	
	,			(1)
	c)	Calc	culate the atom economy for this process.	
	•)			(1)
				()
16)		crys	en 12.3 g of MgSO ₄ . n H ₂ O is heated gently until no further change in mass occurs, to remove the water of tallisation, 6.0 g of anhydrous magnesium sulfate (MgSO ₄) remained. Work out the relative formula s (M _r) of the MgSO ₄ . n H ₂ O, and so the value of n .	
			$MgSO_{4.}nH_{2}O \rightarrow MgSO_{4} + nH_{2}O$	
				(4)
1				

17)		and zinc oxid	e 1850, most books and documents have been printed on acidic paper which, over time, becomes brittle disintegrates. By treating books with diethyl zinc vapour, the acids in the book are neutralised. Diethyl vapour penetrates the closed book and reacts with the small amount of water in the paper to form zinc e. The zinc oxide neutralises the acids and protects the book from acids that may be formed later. e is virtually no difference between treated and untreated books.	
		The	reaction between diethyl zinc and water is represented by the equation:	
			$Zn(C_2H_5)_2(g) + H_2O(I) \rightarrow ZnO(s) + 2 C_2H_6(g)$	
		The	total moisture content of a book which was treated was found to be 0.9 g of water.	
	a)	i)	How many moles of water were present in the book?	
				(1)
		ii)	Using the equation, how many moles of diethyl zinc would react with this amount of water?	
				(1)
		iii)	What is the volume at room temperature and pressure of this amount of diethyl zinc vapour?	
				(1)
		iv)	What mass of zinc oxide would be formed in the book?	. ,
				(2)
	b)		acid content of the book was found to be 0.032 moles of $H^{+}_{(aq)}$. The equation for the reaction between oxide and acid is:	
			$ZnO(s)$ + 2 H ⁺ (aq) \rightarrow Zn ²⁺ (aq) + H ₂ O(I)	
		i)	Calculate the mass of zinc oxide required to neutralise the acid in the book.	
				(2)
		ii)	Hence calculate the mass of excess zinc oxide which remains in the book.	
				(2)

7 – SOLUTION CALCULATIONS

Normal solution calculations

- a) Use the volume and concentration of one reactant to calculate the moles.
- b) Use the chemical equation to find the moles of the other reactant.
- c) Calculate the volume or concentration as required of that reactant.

<u>Note</u>

• Volume in dm³ = $\frac{\text{volume in cm}^3}{1000}$

- In many titrations, a standard solution of one the reagents is made (typically 250 cm³ in a volumetric flask), and 25 cm³ portions of this standard solution are used in each titration
- Monoprotic acids contain one H⁺ ion per unit (e.g. HCl, HNO₃, CH₃COOH) with NaOH they react in the ratio 1:1 (acid : NaOH)
- Diprotic acids contain two H⁺ ions per unit (e.g. H₂SO₄) with NaOH they react in the ratio 1:2 (acid : NaOH)
- Triprotic acids contain three H⁺ ions per unit (e.g. H₃PO₄) with NaOH they react in the ratio 1:3 (acid : NaOH)

E.g. 1: 25.0 cm³ of 0.020 mol/dm³ sulphuric acid neutralises 18.6 cm³ of sodium hydroxide solution.

 $\begin{array}{rrrr} H_2SO_4(aq) & + & 2 \ NaOH(aq) & \rightarrow & Na_2SO_4(s) & + & 2 \ H_2O(I) \end{array}$

a) Find the concentration of the sodium hydroxide solution in mol/dm³.

Moles of $H_2SO_4 = \operatorname{conc} x \operatorname{vol} (dm^3) = 0.020 x^{25}/_{1000} = 0.000500$ Moles of NaOH = $\operatorname{conc} x \operatorname{vol} (dm^3) = 2 x \operatorname{moles} H_2SO_4 = 0.000500 x 2 = 0.00100$ Concentration of NaOH = $\operatorname{mol}_{\operatorname{vol}} = \frac{0.00100}{(1^{18.6}/_{1000})} = \frac{0.0538 \operatorname{mol/dm^3}}{(1^{18.6}/_{1000})}$

b) Find the concentration of the sodium hydroxide solution in g/dm³.

 $M_{r} \text{ of NaOH} = 23.0 + 16.0 + 1.0 = 40.0$ Mass of NaOH in 1 dm³ = M_r x moles = 40.0 x 0.0538 = 2.15 g Concentration = <u>2.15 g/dm³</u>

E.g. 2: Crystals of citric acid contain water of crystallisation ($C_6H_8O_7.nH_2O$). Citric acid is a triprotic acid. 1.52 g of the citric acid was made up to 250 cm³ solution. 25 cm³ portions of this solution required 21.80 cm³ of 0.100 mol dm⁻³ for neutralisation. Calculate the value of n.

Moles of NaOH = conc x vol (dm³) = $0.100 \text{ x}^{21.70}/_{1000} = 0.00218$ Moles of C₆H₈O₇.nH₂O in each titration = 0.00218 / 3 = 0.000727 (1 mol of acid reacts with 3 mol of NaOH) Moles of C₆H₈O₇.nH₂O in 250 cm³ solution = 0.000727 x 10 = 0.00727M_r of C₆H₈O₇.nH₂O = $\frac{\text{mass}}{\text{moles}} = \frac{1.52}{0.00727} = 209.2$ M_r of nH₂O = 209.2 - 192.1 = 17.1n = $\frac{17.1}{1} = 0.950 = 1$ (n is a whole number)

concentration (mol/dm³) = <u>moles</u> volume (dm³)

18.0

Calculate the number of moles in the following. a) $2 \text{ dm}^3 \text{ of } 0.05 \text{ mol } \text{dm}^{-3} \text{ HCl}$ b) 50 litres of 5 mol dm⁻³ H_2SO_4 c) 10 cm³ of 0.25 mol dm⁻³ KOH Calculate the concentration of the following in **both** mol dm⁻³ and g dm⁻³ a) 0.400 moles of HCl in 2.00 litres of solution b) 12.5 moles of H_2SO_4 in 5.00 dm³ of solution c) 1.05 g of NaOH in 500 cm³ of solution Calculate the volume of each solution that contains the following number of moles. a) 0.00500 moles of NaOH from 0.100 mol dm⁻³ solution b) 1.00×10^{-5} moles of HCl from 0.0100 mol dm⁻³ solution 25.0 cm³ of 0.020 mol dm⁻³ sulphuric acid neutralises 18.6 cm³ of barium hydroxide solution. $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2 H_2O$ a) Find the concentration of the barium hydroxide solution in mol dm⁻³. b) Find the concentration of the barium hydroxide solution in g dm⁻³. 25.0 cm³ of a solution of sodium hydroxide required 18.8 cm³ of 0.0500 mol dm⁻³ H₂SO₄. H_2SO_4 + 2 NaOH \rightarrow Na₂SO₄ + 2 H₂O a) Find the concentration of the sodium hydroxide solution in mol dm⁻³. b) Find the concentration of the sodium hydroxide solution in $g dm^{-3}$. Calculate the volume of 0.05 mol dm⁻³ KOH is required to neutralise 25.0 cm³ of 0.0150 mol dm⁻³ HNO₃. HNO_3 + KOH \rightarrow KNO₃ + H₂O 25.0 cm³ of arsenic acid, H₃AsO₄, required 37.5 cm³ of 0.100 mol dm⁻³ sodium hydroxide for neutralisation. $3 \text{ NaOH}(aq) + H_3 \text{AsO}_4(aq) \rightarrow \text{Na}_3 \text{AsO}_4(aq) + 3 H_2 O(I)$ a) Find the concentration of the acid in mol dm^{-3} .

TASK 16 – SOLUTION CALCULATIONS

1)

2)

3)

4)

5)

6)

7)

- b) Find the concentration of the acid in more difficult of the acid in g dm⁻³.
- 8) A 250 cm³ solution of NaOH was prepared. 25.0 cm³ of this solution required 28.2 cm³ of 0.
- A 250 cm³ solution of NaOH was prepared. 25.0 cm³ of this solution required 28.2 cm³ of 0.100 mol dm⁻³ HCl for neutralisation. Calculate what mass of NaOH was dissolved to make up the original 250 cm³ solution.

HCl + NaOH
$$\rightarrow$$
 NaCl + H₂O

9) What volume of 5.00 mol dm^{-3} HCl is required to neutralise 20.0 kg of CaCO₃?

$$2 \text{ HCl} + \text{CaCO}_3 \rightarrow \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2$$

10) 3.88 g of a monoprotic acid was dissolved in water and the solution made up to 250 cm³. 25.0 cm³ of this solution was titrated with 0.095 mol dm³ NaOH solution, requiring 46.5 cm³. Calculate the relative molecular mass of the acid.

- 11) A 1.575 g sample of ethanedioic acid crystals, H₂C₂O₄.nH₂O, was dissolved in water and made up to 250 cm³. One mole of the acid reacts with two moles of NaOH. In a titration, 25.0 cm³ of this solution of acid reacted with exactly 15.6 cm³ of 0.160 mol dm⁻³ NaOH. Calculate the value of n.
- 12) A solution of a metal carbonate, M₂CO₃, was prepared by dissolving 7.46 g of the anhydrous solid in water to give 1000 cm³ of solution. 25.0 cm³ of this solution reacted with 27.0 cm³ of 0.100 mol dm³ hydrochloric acid. Calculate the relative formula mass of M₂CO₃ and hence the relative atomic mass of the metal M.
- 13) An impure sample of barium hydroxide of mass 1.6524 g was allowed to react with 100 cm³ of 0.200 mol dm⁻³ hydrochloric acid. When the excess acid was titrated against sodium hydroxide, 10.9 cm³ of sodium hydroxide solution was required. 25.0 cm³ of the sodium hydroxide required 28.5 cm³ of the hydrochloric acid in a separate titration. Calculate the percentage purity of the sample of barium hydroxide.

2) Back titrations

A back titration is done to analyse a base (or acid) that does not react easily or quickly with an acid (or base). Instead, the base (or acid) is treated with an excess of acid (or base), and then the left over acid (or base) titrated. You can then work back to find out about the original base (or acid).

e.g. Imagine that we are trying to find out how many moles of CaCO₃ we have (let's call it x moles). We add 10 moles of HCI (an excess). The excess is made into a 250 cm³ stock solution and then 25 cm³ portions of it require 0.4 moles of NaOH for neutralisation.

 $\mathsf{CaCO}_3 \ + \ 2 \ \mathsf{HCl} \ \rightarrow \ \mathsf{CaCl}_2 \ + \ \mathsf{H}_2\mathsf{O} \ + \ \mathsf{CO}_2 \qquad \qquad \mathsf{HCl} \ + \ \mathsf{NaOH} \ \rightarrow \ \mathsf{NaCl} \ + \ \mathsf{H}_2\mathsf{O}$

- This means that there is 10 x 0.4 moles (= 4 moles) of left over HCl in the stock solution
- This means that 6 moles (10 4 moles) of HCl reacted with the CaCO₃.
- This means that there must have been 3 moles of $CaCO_3$ (i.e. x = 3) in the first place (remember that 2 moles of HCl reacts with each mole of $CaCO_3$).
- e.g. Aspirin is a monoprotic acid that can be analysed by a back titration with NaOH. We add 0.25 moles of NaOH (an excess) to y moles of aspirin and make the resulting solution into a 250 cm³ stock solution. We titrate 25 cm³ portions of the solution which require 0.01 moles of HCl for neutralisation. Calculate the original moles of aspirin.

e.g. Malachite is an ore containing copper carbonate (CuCO₃. We add 5.00 moles of HCl (an excess) to some crushed malachite and make the resulting solution into a 250 cm³ stock solution. We titrate 25 cm³ portions of the solution which require 0.15 moles of NaOH for neutralisation. Calculate the original moles of copper carbonate in the malachite.

TASK 17 – BACK TITRATION CALCULATIONS

Limestone is mainly calcium carbonate. A student wanted to find what percentage of some limestone was calcium carbonate. A 1.00 g sample of limestone is allowed to react with 100 cm³ of 0.200 mol dm⁻³ HCI. The excess acid required 24.8 cm³ of 0.100 mol dm⁻³ NaOH solution in a back titration. Calculate the percentage of calcium carbonate in the limestone.

 $CaCO_3 + 2 HCI \rightarrow CaCl_2 + H_2O + CO_2 \qquad \qquad HCI + NaOH \rightarrow NaCI + H_2O$

2) An impure sample of barium hydroxide of mass 1.6524 g was allowed to react with 100 cm³ of 0.200 mol dm⁻³ hydrochloric acid. When the excess acid was titrated against 0.228 mol dm⁻³ sodium hydroxide in a back titration, 10.9 cm³ of sodium hydroxide solution was required. Calculate the percentage purity of the sample of barium hydroxide.

 $Ba(OH)_2 + 2 HCI \rightarrow BaCl_2 + 2 H_2O \qquad \qquad HCI + NaOH \rightarrow NaCI + H_2O$

3) Calculate (a) the moles and (b) the mass of magnesium carbonate at the start if 0.2 moles of sulfuric acid is added to the magnesium carbonate and the excess sulfuric acid made up to a 250 cm³ solution. 25 cm³ of this solution required 0.03 moles of sodium hydroxide for neutralisation.

 $\mathsf{MgCO}_3 + \mathsf{H}_2\mathsf{SO}_4 \rightarrow \mathsf{MgSO}_4 + \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2 \qquad \qquad \mathsf{H}_2\mathsf{SO}_4 + 2\,\mathsf{NaOH} \rightarrow \mathsf{NaCI} + \mathsf{H}_2\mathsf{O}$

- 4) A student wanted to find the mass of calcium carbonate in an indigestion tablet. She crushed up a tablet and added an excess of hydrochloric acid (25.0 cm³ of 1.00 mol dm⁻³). She then titrated the excess against 0.50 mol dm⁻³ NaOH requiring 25.8 cm³ of the NaOH. Calculate the mass of calcium carbonate in the tablet.
- 5) A sample containing ammonium chloride was warmed with 100 cm³ of 1.00 mol dm⁻³ sodium hydroxide solution. After the ammonia had reacted the excess sodium hydroxide required 50.0 cm³ of 0.250 mol dm⁻³ HCl for neutralisation. What mass of ammonium chloride did the sample contain?

- 1) A fertiliser contains ammonium sulphate and potassium sulphate. A sample of 1.455 g of the fertiliser was warmed with 25 cm³ 0.2 mol dm⁻³ sodium hydroxide solution giving off ammonia gas. The remaining NaOH that was not used required 28.7 cm³ of 0.100 mol dm⁻³ hydrochloric acid for neutralisation. Calculate the percentage by mass of ammonium sulphate in the sample.
- Silicon tetrachloride dissolves in ethoxyethane, an inert solvent. If the ethoxyethane is contaminated with a little water, a partial hydrolysis occurs and two compounds A and B are formed. The formula of A is Si₂OCl₆ and that of B is Si₃O₂Cl₈.

When a 0.100 g sample of one of the compounds, **A** or **B** reacted with an excess of water, all the chlorine present was converted to chloride ions. Titration of this solution with aqueous silver nitrate, in the presence of a suitable indicator, required 42.10 cm³ of 0.0500 mol dm⁻³ aqueous silver nitrate for complete precipitation of silver chloride. Deduce which of the compounds **A** or **B** was present in the 0.100 g sample.

10-Jan-15

8 - EMPIRICAL & MOLECULAR FORMULAS

- Every substance has an empirical formula. It shows the simplest ratio of atoms of each element in a substance.
 - e.g. SiO₂ (giant covalent) the ratio of Si:O atoms in the lattice is 1:2 Al₂O₃ (ionic) – the ratio of Al³⁺:O²⁻ ions in the lattice is 2:3 H₂O (molecular) – the ratio of H:O atoms in the substance is 1:2
- Substances made of molecules also have a molecular formula. This indicates the number of atoms of each element in <u>one molecule</u>.

a) Finding the molecular formula from the formula mass and empirical formula

e.g. Empirical formula = CH_2 , $M_r = 42.0$ Formula mass of empirical formula = 14.0 \therefore M_r / formula mass of empirical formula = 42.0/14.0 = 3 Molecular formula = 3 x empirical formula = C_3H_6

b) Finding the empirical formula of a compound from its composition by percentage or mass

- i) Write out the mass or percentage of each element,
- ii) Divide each mass or percentage by the A_r of the element (not the M_r)
- iii) Find the simplest whole number ratio of these numbers by dividing by the smallest number. If the values come out as near ¹/₂'s then times them by 2, if they are near ¹/₃'s then times by 3.
 - e.g. i) A compound is found to contain, by mass, iron 72.4% and oxygen 27.6%.

Fe $\frac{72.4}{56}$ = 1.29 O $\frac{27.6}{16}$ = 1.73 Simplest ratio Fe:O = 1.29 : 1.73 (divide by smallest, i.e. 1.29) 1 : 1.34 (involves ¹/₃'s so x3) 3 : 4 ∴ empirical formula = **Fe₃O₄**

e.g. ii) 0.25 g of hydrogen reacts with oxygen to produce 4.25 g of hydrogen peroxide (M_r = 34.0).

Mass of oxygen reacting with hydrogen = 4.25 - 0.25 = 4.00 g

H
$$\frac{0.25}{1}$$
 = 0.25 O $\frac{4.00}{16}$ = 0.25
Simplest ratio H:O = 0.25 : 0.25 (divide by smallest, i.e. 0.25)

: empirical formula = HO

Formula mass of empirical formula = 17.0

 \therefore M_r / formula mass of empirical formula = 34.0/17.0 = 2

Molecular formula = $2 \times \text{empirical formula} = H_2O_2$

1)	Wr	te the	e empirical for	mul	a of e	each of the	e fol	lowing su	ubstar	ices.		
	a)	C ₂ ł	H ₆		b)	P_2O_3			c)	SO ₂	d)	C ₆ H ₁₂
	e)	C ₂ ł	H_4O_2		f)	C_2H_7N			g)	B_6H_{10}	h)	$C_{12}H_{22}O_{11}$
2)			irical formula cular formula				culai	mass of	fsom	e simple molect	ular compou	unds are shown below. Work o
	a)	NH_2	M _r = 32				d)	PH_3	M _r =	: 34		
	b)	C ₂ H	₅ M _r = 58				e)	СН	M _r =	78		
	c)	CH ₂	M _r = 70				f)	CH ₂	M _r =	: 42		
3)		ne sn	nall random e		s whic	ch mean t			ound	the numbers a l	little bit.	from experiments so there will
	a)	1.5	: 1		,	1 : 1.98			,	4.97 : 1	- /	1 : 2.52
	e)	1:	1.33		f)	1.66 : 1			g)	1 : 1.26	h)	1 : 1.74
I)	Find		-				ng c	ompound	ls usir	ng the data give	n.	
	a)		20 %		80 %							
	b)	Na	29.1 %	S	40.5			30.4 %				
	c)	С	53.3 %		15.5		Ν	31.1 %				
	d)	С	2.73 g	0	7.27	'g						
	e)	Ν	15.2 g	0	34.8	3 g						
5)	3 53	h م ا	iron reacts wi	ith c	hlorir	ne to form	10 1	24 a of irr	on chl	oride Find the	empirical fo	rmula of the iron chloride.
,	0.00	y g oi			morm		10.1	2190110				
5)			a compound of the compou		ntains	s 22.4 g c	of po	otassium,	9.2 g) of sulphur, and	d the rest o	xygen. Calculate the empirical
7)			of phosphoru empirical and							43.6 % oxygen	. Its relativ	e molecular mass is 220. Find
3)			und contains both the emp								ygen. It has	a relative molecular formula of
												$\Lambda_{\rm r}$ of 85. When 0.43 g of X are ind the empirical and molecular

Full worked solutions are available to subscribers of <u>www.chemsheets.co.uk</u>.

Subscribe for many more exercises with answers.

TASK 1 – Writing formulas of ionic compounds

1	AgBr	2	Na ₂ CO ₃	3	K ₂ O	4	Fe ₂ O ₃	5	CrCl₃	6	Ca(OH) ₂
7	AI(NO ₃) ₃	8	Na ₂ SO ₄	9	PbO	10	Na₃PO₄	11	Zn(HCO ₃) ₂	12	(NH4)2SO4
13	Ga(OH)₃	14	SrSe	15	RaSO ₄	16	Na₃N				

TASK 2 – Writing formulas 1

1	PbO ₂	2	Cu	3	Na	4	NH₄CI	5	NH ₃	6	S ₈
7	H_2SO_4	8	Ne	9	SiO ₂	10	Si	11	Ba(OH) ₂	12	SnCl₄
13	AgNO₃	14	l ₂	15	Ni	16	H₂S	17	TiO ₂	18	Pb
19	SrSO₄	20	Li								

TASK 3 – Writing formulas 2

1	Ag ₂ CO ₃	2	Au	3	PtF ₂	4	HNO ₃	5	NH ₃	6	SiH₄
7	P ₄	8	С	9	V_2O_5	10	Co(OH) ₂	11	Ca(OH) ₂	12	NH₄CI
13	HCI	14	F ₂	15	Si	16	Ca ₃ (PO ₄) ₂	17	Rb	18	GeO ₂
19	MgAt ₂	20	Ar								

TASK 4 – Writing balanced equations 1

- 1 a Mg + 2 HNO₃ \rightarrow Mg(NO₃)₂ + H₂
 - b $CuCl_2 + 2 NaOH \rightarrow Cu(OH)_2 + 2 NaCI$
 - $c \quad 2 \ SO_2 + O_2 \rightarrow 2 \ SO_3$
 - $d\quad C_4H_{10} + 6\frac{1}{2} \ O_2 \rightarrow 4 \ CO_2 + 5 \ H_2O \quad \text{or} \ 2 \ C_4H_{10} + 13 \ O_2 \rightarrow 8 \ CO_2 + 10 \ H_2O$
- $2 \qquad a \quad 4 \text{ Na} + \text{O}_2 \rightarrow 2 \text{ Na}_2\text{O}$
 - $b \quad 2 \text{ Al} + 3 \text{ Cl}_2 \rightarrow 2 \text{ AlCl}_3$
 - $c \quad Ca + 2 \; HCl \rightarrow CaCl_2 + H_2$
 - $d\quad 2 \ NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$

TASK 5 – Writing balanced equations 2

- $1 \qquad 4 \text{ Al} + 3 \text{ } O_2 \rightarrow 2 \text{ } Al_2O_3$
- $2 \qquad C_6H_{14} + 91^\prime_2 \ O_2 \rightarrow 6 \ CO_2 + 7 \ H_2O \quad \text{or} \quad 2 \ C_6H_{14} + 19 \ O_2 \rightarrow 12 \ CO_2 + 14 \ H_2O$
- $3 \qquad \mathsf{CH_3CH_2SH} + 4\frac{1}{2} \operatorname{O_2} \rightarrow 2 \operatorname{CO_2} + \operatorname{SO_2} + 3 \operatorname{H_2O} \quad \text{or} \quad 2 \operatorname{CH_3CH_2SH} + 9 \operatorname{O_2} \rightarrow 4 \operatorname{CO_2} + 2 \operatorname{SO_2} + 6 \operatorname{H_2O}$
- $4 \qquad 2 \text{ Li} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ LiOH} + \text{H}_2$
- $5 \qquad \mathsf{CaCO}_3 + 2 \ \mathsf{HNO}_3 \rightarrow \mathsf{Ca}(\mathsf{NO}_3)_2 + \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2$
- $6 \qquad \text{Li}_2\text{CO}_3 \rightarrow \text{Li}_2\text{O} + \text{CO}_2$

- $7 \qquad \mathsf{NH}_3 + \mathsf{HNO}_3 \to \mathsf{NH}_4\mathsf{NO}_3$
- $8 \qquad \mathsf{K_2O} + \mathsf{H_2SO_4} \to \mathsf{K_2SO_4} + \mathsf{H_2O}$
- 9 $Ca(OH)_2 + 2 HCI \rightarrow CaCl_2 + 2 H_2O$
- $10 \quad 3 \text{ Zn} + 2 \text{ H}_3\text{PO}_4 \rightarrow \text{Zn}_3(\text{PO}_4)_2 + 3 \text{ H}_2$
- 11 2 NaHCO₃ + $H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2$
- $12 \quad 2 \text{ KOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{ H}_2 \text{O}$

TASK 6 – Ionic equations

1 HCI, LiOH, 1:1; H₂SO₄, NaHCO₃, 1:2; HNO₃, NH₃, 1:1; H₂SO₄, K₂CO₃, 1:1, HNO₃, Sr(OH)₂, 2:1

- a $H^+ + OH^- \rightarrow H_2O$
 - b $Ag^+ + I^- \rightarrow AgI$

2

- $c \quad 2 \text{ H}^{+} + \text{ CO}_{3}^{2^{-}} \rightarrow \text{H}_{2}\text{O} + \text{CO}_{2}$
- d $Ca^{2+} + 2 OH^{-} \rightarrow Ca(OH)_2$
- $e \quad NH_3 + H^+ \rightarrow NH_4^+$
- $f \quad H^{^+} + HCO_3^- \rightarrow H_2O + CO_2$
- g $Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4$
- h $Pb^{2+} + 2 Cl^- \rightarrow PbCl_2$
- $i \quad H^{+} + OH^{-} \rightarrow H_2O$

TASK 7 – Significant figures & standard form

1	а	345800	b	297000	с	0.0790	d	6.00	е	0.00156	f	0.01000
2	а	2350000	b	0.250	с	13.7	d	30.0	е	0.00198	f	0.000313
3	а	0.0015	b	0.00046	с	357500	d	534	е	1030000	f	0.00835
4	а	1.64 x 10 ⁻⁴	b	5.24 x 10 ⁻²	с	1.5 x 10 ⁻⁸	d	3.45 x 10 ⁴	е	6.2 x 10 ⁻¹	f	8.7 x 10 ⁷
5	а	0.0214	b	6.14 x 10 ⁻⁵	С	4.00 x 10 ⁸	d	2400	е	0.0610	f	8.00 x 10 ⁻⁷

TASK 8 – Moles

1	а	2.96	b	50.3	с	0.500	d	17100	е	0.000107
2	а	355 g	b	20.4 g	с	1.08 g	d	0.264 g	е	85.8 g
3	а	0.25	b	0.25	с	0.50				
4	а	0.050	b	0.10	С	0.15				
5	17	' 6								
6	а	1.670 x 10	⁻²⁴ g	b 1.673 x 1	0 ⁻²⁴ g	c 5.023 x 10 ⁻²	⁴ g			

TASK 9 – What equations mean

- $1 \qquad 12 \text{ mol Na} + 3 \text{ mol } O_2 \rightarrow 6 \text{ mol Na}_2O; \quad 0.1 \text{ mol Na} + 0.025 \text{ mol } O_2 \rightarrow 0.05 \text{ mol Na}_2O$
- $2 \qquad 5 \text{ mol Al} + 7.5 \text{ mol Cl}_2 \rightarrow 5 \text{ mol AlCl}_3; \quad 0.1 \text{ mol Al} + 0.15 \text{ mol Cl}_2 \rightarrow 0.1 \text{ mol AlCl}_3$
- $3 \qquad 0.5 \text{ mol } C_4 H_{10} + 3.25 \text{ mol } O_2 \rightarrow 2 \text{ mol } CO_2 + 2.5 \text{ mol } H_2 O; \\ 20 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 130 \text{ mol } O_2 \rightarrow 80 \text{ mol } CO_2 + 100 \text{ mol } H_2 O; \\ 0.5 \text{ mol } C_4 H_{10} + 100 \text{ mol } O_2 \rightarrow 80 \text{ mol } O_$
- $4 \qquad 0.5 \text{ mol } \text{NH}_3 + 0.375 \text{ mol } \text{O}_2 \rightarrow 0.25 \text{ mol } \text{N}_2 + 0.75 \text{ mol } \text{H}_2\text{O}; \quad 10 \text{ mol } \text{NH}_3 + 7.5 \text{ mol } \text{O}_2 \rightarrow 5 \text{ mol } \text{N}_2 + 15 \text{ mol } \text{H}_2\text{O};$

TASK 10 – Reacting mass calculations 1

1	1.01 g	2	126 g	3	120 g	4	253000 g	5	17.6 g	6	12.0 g
7	7	8	6	9	9780 g	10	1562000 g	11	0.00940 g	12	1.11 g
13	115 g	14	1650000 g	15	64.0 g	16	89.3 g				

TASK 11 – Reacting mass calculations 2

1	a 2 mol NH ₃	b	6 mol NH₃	С	1.33 mol NH ₃	d	1.0 mol NH ₃	е	4 mol NH ₃
2	a 3 mol SO ₃	b	3 mol SO3	с	0.04 mol SO ₃	d	0.8 mol SO ₃	е	2 mol SO3
3	7.88 g	4	2694 g	5	303000 g	6	98.6 g	7	1210 g
8	1250 g	9	42.9 g						

CHALLENGE 1

1	NaHCO ₃ = 3.51 g, Na ₂ CO ₃ 6.49 g	2	CaCO ₃ = 40.3%, MgCO ₃ = 59.7%	3	C_4H_8	4	26.6%
---	---	---	--	---	----------	---	-------

TASK 12 – Percentage yield

1	а	120 g	b	74.9%	С	reversible, pro	oduct l	ost on isolation,	other	reactions take place
2	а	700000 g	b	92.3%		3	а	510 g	b	30.0%
4	а	25.2 g	b	79.4%		5	а	529 g	b	94.4%
6	а	330 g	b	90.8%		7	а	2.40 g	b	88.4%

TASK 13 – Atom economy

1	39.3%	2	1.5%	3	45.8%	4	56.0%	5	100%	6	47.1%
7	a 320 g	b	87.5%	с	29.5%						

d % yield compares the amount produced compared to the amount you should get, atom economy is the proportion of the mass of all the products that is the desired product

TASK 14 – Ideal gas equation

1	a 473 K	b	98000 Pa	с	50 x 10⁻ ⁶ m³	d	223 K	е	100000 Pa	f	3.2 x 10⁻³ m³
2	1.24 x 10 ⁻³ m ³	3	0.786	4	104000 Pa	5	155 K	6	71.0	7	0.00380 m ³
8	3.36 g	9	0.000538 m ³	10	4.53 m ³	11	64.1	12	483 K	13	126400 Pa

TASK 15 – Reacting gas volumes

1	a $O_2 2 dm^3$, $CO_2 1 dm^3$	b	O ₂ 120 cm ³ , CO ₂ 80 cm ³		
	c $O_2 1250 \text{ cm}^3$, $CO_2 1000 \text{ cm}^3$	d	$O_2 5625 \text{ cm}^3$, CO ₂ 4500 cm ³ q	2	20 cm ³ HBr left at end
3	300 cm ³ O ₂ , 100 cm ³ CO ₂ , total 400	cm ³ (gas at end $4 ext{ 4 dm}^3 ext{ O}_2$, 4 dn	$1^3 H_2$	D, 4 dm ³ SO ₂ , total 12 dm ³ gas

CHALLENGE 2

1	44.0	2 1:3.11,40.9 g	3 NS	4	C ₂ H₄ 5 515 ms ⁻¹ 6	C ₃ H ₈
---	------	-----------------	------	---	--	-------------------------------

Calculations CHECK-UP

1	a Zn(NO ₃) ₂ b Pb	С	Cr ₂ O ₃	d	(NH ₄) ₂ SO ₄
	e P ₄ f N ₂	g	Ba(OH) ₂	h	Al ₂ (SO ₄) ₃
2	H ₂ SO ₄ , KOH, 1:2; HCI, KHCO ₃ , 1:1	; н	NO ₃ , NH ₃ , 1:1; H	CI, Z	ZnCO ₃ , 2:1
3	a $H^+ + OH^- \rightarrow H_2O$	b	$Ba^{2+} + SO_4^{2-} \rightarrow$	BaS	SO4
	$c H^{+} + NH_3 \rightarrow NH_4^{+}$	d	$H^+ + HCO_3^- \rightarrow 0$	H ₂ O) + CO ₂
4	a average mass of an atom, relativ	e to	1/12 th mass of ¹² 0	C ato	om b it is the agreed standard
	c mixture of other isotopes				
5	a H ₂ , NH ₃ = 3.3.3	b	H ₂ , NH ₃ = 3.33		
	c N ₂ , NH ₃ = 20	d	H ₂ , NH ₃ = 0.033	3	
6	3.10 x 10 ⁻⁴ m ³	7	8.21 x 10 ⁻³		
8	a volume of $CO_2 = 57.1 \text{ cm}^3$, total =	= 12	8.5 cm ³	b	volume of $CO_2 = 200 \text{ cm}^3$, total = 350 cm ³
	c volume of $CO_2 = 228.6 \text{ cm}^3$, total	1 = 3	14.3 cm ³		
9	2.00 x 10 ⁻³ m ³	10	1.64 m ³		

11	а	40, 60	b	40, 20	С	5.84, 8.76
12	19	3.5 g	13	9.39 g		
14	а	1250 g	b	96%	с	reversible, product lost on isolation, other reactions d 100%
15	а	529 g	b	94.5%	с	52.9% 16 7
17	а	0.05, 0.05,	1.22	x 10 ⁻³ m ³ , 4.07 g		b 1.30 g, 2.77 g

TASK 16 – Solution calculations

1	a 0.1 b 250	С	0.0025		
2	a 0.2 mol dm ⁻³ , 7.3 g dm ⁻³	b	2.5 mol dm ⁻³ , 245.3 g dm ⁻³	с	2.1 mol dm ⁻³ , 84.0 g dm ⁻³
3	a 0.05 dm ³ b 0.001 dm ³				
4	0.0269 mol dm ⁻³ , 4.61 g dm ⁻³	5	0.0752 mol dm ⁻³ , 3.01 g dm ⁻³	6	0.0075 dm ³
7	0.015 mol dm ⁻³ , 71.0 g dm ⁻³	8	1.13 g	9	79.9 dm ³
10	87.8	11	2	12	A _r = 39.1, K
13	90.8%				

CHALLENGE 3

1 96.7% 2 **A** Si₂OCl₆

TASK 17 – Back titration calculations

1	87.7%	2	90.8%	3	0.05 mol, 4.22 g
4	0.606 g	5	4.68 g		

TASK 18 – Empirical & molecular formulas

1	а	CH₃	b	P_2O_3	с	SO ₂	d	CH ₂				
	е	CH ₂ O	f	C_2H_7N	g	B_3H_5	h	$C_{12}H_{22}O_{11}$				
2	а	N_2H_4	b	C_4H_{10}	с	C_5H_{10}	d	PH_3	е	C_6H_6	f	C_3H_6
3	а	3:2	b	1:2	с	5:1	d	2:5				
	е	3:4	f	5:3	g	4:5	h	4:7				
4	а	CaBr ₂	b	$Na_2S_2O_3$	С	C_2H_7N	d	CO ₂	е	NO ₂		
5	Fe	eCl₃	6	K_2SO_4	7	P_2O_3, P_4O_6	8	$CH_2O, C_2H_4O_2$				
9	C5	H ₁₀ O, C ₅ H ₁₀	O		10	x = 4, y = 2						

Calculation Allsorts

1	C ₅ H ₁₁ NO 2	C ₁₁ H ₁₄ O ₂ , C ₁₁ H ₁₄ O ₂	3	526 g	4	2.71 g	5	5.00 dm ³
6	0.0241 mol dm ⁻³	7 234.9	8	3.21%	9	55.0%		

 $10 \quad 10 \text{ AI} + 6 \text{ } \text{NH}_4 \text{CIO}_4 \rightarrow 3 \text{ } \text{N}_2 + 9 \text{ } \text{H}_2 \text{O} + 6 \text{ } \text{HCI} + 5 \text{ } \text{AI}_2 \text{O}_3$